Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution (1501.07174v1)

Published 28 Jan 2015 in cs.SE

Abstract: Constraint solution reuse is an effective approach to save the time of constraint solving in symbolic execution. Most of the existing reuse approaches are based on syntactic or semantic equivalence of constraints; e.g. the Green framework is able to reuse constraints which have different representations but are semantically equivalent, through canonizing constraints into syntactically equivalent normal forms. However, syntactic/semantic equivalence is not a necessary condition for reuse--some constraints are not syntactically or semantically equivalent, but their solutions still have potential for reuse. Existing approaches are unable to recognize and reuse such constraints. In this paper, we present GreenTrie, an extension to the Green framework, which supports constraint reuse based on the logical implication relations among constraints. GreenTrie provides a component, called L-Trie, which stores constraints and solutions into tries, indexed by an implication partial order graph of constraints. L-Trie is able to carry out logical reduction and logical subset and superset querying for given constraints, to check for reuse of previously solved constraints. We report the results of an experimental assessment of GreenTrie against the original Green framework, which shows that our extension achieves better reuse of constraint solving result and saves significant symbolic execution time.

Citations (64)

Summary

We haven't generated a summary for this paper yet.