Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Diagrammatic Axiomatisation for Qubit Entanglement (1501.07082v1)

Published 28 Jan 2015 in cs.LO, math.CT, and quant-ph

Abstract: Diagrammatic techniques for reasoning about monoidal categories provide an intuitive understanding of the symmetries and connections of interacting computational processes. In the context of categorical quantum mechanics, Coecke and Kissinger suggested that two 3-qubit states, GHZ and W, may be used as the building blocks of a new graphical calculus, aimed at a diagrammatic classification of multipartite qubit entanglement that would highlight the communicational properties of quantum states, and their potential uses in cryptographic schemes. In this paper, we present a full graphical axiomatisation of the relations between GHZ and W: the ZW calculus. This refines a version of the preexisting ZX calculus, while keeping its most desirable characteristics: undirectedness, a large degree of symmetry, and an algebraic underpinning. We prove that the ZW calculus is complete for the category of free abelian groups on a power of two generators - "qubits with integer coefficients" - and provide an explicit normalisation procedure.

Citations (81)

Summary

We haven't generated a summary for this paper yet.