Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Metric Approximation Property and Lipschitz-Free Spaces over Subsets of $\mathbb{R}^N$ (1501.07036v1)

Published 28 Jan 2015 in math.FA

Abstract: We prove that for certain subsets $M \subseteq \mathbb{R}N$, $N \geqslant 1$, the Lipschitz-free space $\mathcal{F}(M)$ has the metric approximation property (MAP), with respect to any norm on $\mathbb{R}N$. In particular, $\mathcal{F}(M)$ has the MAP whenever $M$ is a finite-dimensional compact convex set. This should be compared with a recent result of Godefroy and Ozawa, who showed that there exists a compact convex subset $M$ of a separable Banach space, for which $\mathcal{F}(M)$ fails the approximation property.

Summary

We haven't generated a summary for this paper yet.