A Canonical Form for Weighted Automata and Applications to Approximate Minimization (1501.06841v3)
Abstract: We study the problem of constructing approximations to a weighted automaton. Weighted finite automata (WFA) are closely related to the theory of rational series. A rational series is a function from strings to real numbers that can be computed by a finite WFA. Among others, this includes probability distributions generated by hidden Markov models and probabilistic automata. The relationship between rational series and WFA is analogous to the relationship between regular languages and ordinary automata. Associated with such rational series are infinite matrices called Hankel matrices which play a fundamental role in the theory of minimal WFA. Our contributions are: (1) an effective procedure for computing the singular value decomposition (SVD) of such infinite Hankel matrices based on their representation in terms of finite WFA; (2) a new canonical form for finite WFA based on this SVD decomposition; and, (3) an algorithm to construct approximate minimizations of a given WFA. The goal of our approximate minimization algorithm is to start from a minimal WFA and produce a smaller WFA that is close to the given one in a certain sense. The desired size of the approximating automaton is given as input. We give bounds describing how well the approximation emulates the behavior of the original WFA.