Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Learning for Low-Rank matrix reconstruction (1501.05740v1)

Published 23 Jan 2015 in stat.ML, cs.LG, and cs.NA

Abstract: We develop latent variable models for Bayesian learning based low-rank matrix completion and reconstruction from linear measurements. For under-determined systems, the developed methods are shown to reconstruct low-rank matrices when neither the rank nor the noise power is known a-priori. We derive relations between the latent variable models and several low-rank promoting penalty functions. The relations justify the use of Kronecker structured covariance matrices in a Gaussian based prior. In the methods, we use evidence approximation and expectation-maximization to learn the model parameters. The performance of the methods is evaluated through extensive numerical simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.