Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Peculiar symmetry structure of some known discrete nonautonomous equations (1501.05435v1)

Published 22 Jan 2015 in nlin.SI

Abstract: We study the generalized symmetry structure of three known discrete nonautonomous equations. One of them is the semidiscrete dressing chain of Shabat. Two others are completely discrete equations defined on the square lattice. The first one is a discrete analogue of the dressing chain introduced by Levi and Yamilov. The second one is a nonautonomous generalization of the potential discrete KdV equation or, in other words, the H1 equation of the well-known Adler-Bobenko-Suris list. We demonstrate that these equations have generalized symmetries in both directions if and only if their coefficients, depending on the discrete variables, are periodic. The order of the simplest generalized symmetry in at least one direction depends on the period and may be arbitrarily high. We substantiate this picture by some theorems in the case of small periods. In case of an arbitrarily large period, we show that it is possible to construct two hierarchies of generalized symmetries and conservation laws. The same picture should take place in case of any nonautonomous equation of the Adler-Bobenko-Suris list.

Summary

We haven't generated a summary for this paper yet.