Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computationally Efficient Sparse Bayesian Learning via Generalized Approximate Message Passing (1501.04762v1)

Published 20 Jan 2015 in cs.IT and math.IT

Abstract: The sparse Beyesian learning (also referred to as Bayesian compressed sensing) algorithm is one of the most popular approaches for sparse signal recovery, and has demonstrated superior performance in a series of experiments. Nevertheless, the sparse Bayesian learning algorithm has computational complexity that grows exponentially with the dimension of the signal, which hinders its application to many practical problems even with moderately large data sets. To address this issue, in this paper, we propose a computationally efficient sparse Bayesian learning method via the generalized approximate message passing (GAMP) technique. Specifically, the algorithm is developed within an expectation-maximization (EM) framework, using GAMP to efficiently compute an approximation of the posterior distribution of hidden variables. The hyperparameters associated with the hierarchical Gaussian prior are learned by iteratively maximizing the Q-function which is calculated based on the posterior approximation obtained from the GAMP. Numerical results are provided to illustrate the computational efficacy and the effectiveness of the proposed algorithm.

Citations (23)

Summary

We haven't generated a summary for this paper yet.