Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Model Predictive Control of A Gasoline HCCI Engine Using Extreme Learning Machines (1501.03969v1)

Published 16 Jan 2015 in cs.SY and cs.NE

Abstract: Homogeneous charge compression ignition (HCCI) is a futuristic combustion technology that operates with a high fuel efficiency and reduced emissions. HCCI combustion is characterized by complex nonlinear dynamics which necessitates a model based control approach for automotive application. HCCI engine control is a nonlinear, multi-input multi-output problem with state and actuator constraints which makes controller design a challenging task. Typical HCCI controllers make use of a first principles based model which involves a long development time and cost associated with expert labor and calibration. In this paper, an alternative approach based on machine learning is presented using extreme learning machines (ELM) and nonlinear model predictive control (MPC). A recurrent ELM is used to learn the nonlinear dynamics of HCCI engine using experimental data and is shown to accurately predict the engine behavior several steps ahead in time, suitable for predictive control. Using the ELM engine models, an MPC based control algorithm with a simplified quadratic program update is derived for real time implementation. The working and effectiveness of the MPC approach has been analyzed on a nonlinear HCCI engine model for tracking multiple reference quantities along with constraints defined by HCCI states, actuators and operational limits.

Citations (5)

Summary

We haven't generated a summary for this paper yet.