Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Squaring operator Pólya--Szegö and Diaz--Metcalf type inequalities (1501.02939v1)

Published 13 Jan 2015 in math.FA and math.OA

Abstract: We square operator P\'{o}lya--Szeg\"{o} and Diaz--Metcalf type inequalities as follows: If operator inequalities $0<m_{1}{2} \leq A\leq M_{1}{2}$ and $0<m_{2}{2}\leq B\leq M_{2}{2}$ hold for some positive real numbers $m_{1}\leq M_{1}$ and $m_{2}\leq M_{2}$, then for every unital positive linear map $\Phi$ the following inequalities hold: \begin{eqnarray*} (\Phi(A)\sharp\Phi(B))2 &\leq&\left(\frac{M_1M_2 + m_1m_2}{2\sqrt{M_1M_2m_1m_2}}\right)4\Phi(A\sharp B){2} \end{eqnarray*} and \begin{eqnarray*} \left( \frac{M_2m_2}{M_1m_1}\Phi (A) + \Phi (B) \right)2 \leq \left( \frac{(M_1m_1(M_22 + m_22) + M_2m_2(M_12 + m_12))2}{8\sqrt{M_2M_1m_1m_2} M_12m_12M_2m_2} \right)2\Phi (A\sharp B)2\,. \end{eqnarray*}

Summary

We haven't generated a summary for this paper yet.