2000 character limit reached
Squaring operator Pólya--Szegö and Diaz--Metcalf type inequalities (1501.02939v1)
Published 13 Jan 2015 in math.FA and math.OA
Abstract: We square operator P\'{o}lya--Szeg\"{o} and Diaz--Metcalf type inequalities as follows: If operator inequalities $0<m_{1}{2} \leq A\leq M_{1}{2}$ and $0<m_{2}{2}\leq B\leq M_{2}{2}$ hold for some positive real numbers $m_{1}\leq M_{1}$ and $m_{2}\leq M_{2}$, then for every unital positive linear map $\Phi$ the following inequalities hold: \begin{eqnarray*} (\Phi(A)\sharp\Phi(B))2 &\leq&\left(\frac{M_1M_2 + m_1m_2}{2\sqrt{M_1M_2m_1m_2}}\right)4\Phi(A\sharp B){2} \end{eqnarray*} and \begin{eqnarray*} \left( \frac{M_2m_2}{M_1m_1}\Phi (A) + \Phi (B) \right)2 \leq \left( \frac{(M_1m_1(M_22 + m_22) + M_2m_2(M_12 + m_12))2}{8\sqrt{M_2M_1m_1m_2} M_12m_12M_2m_2} \right)2\Phi (A\sharp B)2\,. \end{eqnarray*}