Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

An Effective Semi-supervised Divisive Clustering Algorithm (1412.7625v2)

Published 24 Dec 2014 in cs.LG, cs.CV, and stat.ML

Abstract: Nowadays, data are generated massively and rapidly from scientific fields as bioinformatics, neuroscience and astronomy to business and engineering fields. Cluster analysis, as one of the major data analysis tools, is therefore more significant than ever. We propose in this work an effective Semi-supervised Divisive Clustering algorithm (SDC). Data points are first organized by a minimal spanning tree. Next, this tree structure is transitioned to the in-tree structure, and then divided into sub-trees under the supervision of the labeled data, and in the end, all points in the sub-trees are directly associated with specific cluster centers. SDC is fully automatic, non-iterative, involving no free parameter, insensitive to noise, able to detect irregularly shaped cluster structures, applicable to the data sets of high dimensionality and different attributes. The power of SDC is demonstrated on several datasets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)