Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on micro-instability for Hamiltonian systems close to integrable (1412.7455v2)

Published 23 Dec 2014 in math.DS

Abstract: In this note, we consider the dynamics associated to an epsilon-perturbation of an integrable Hamiltonian system in action-angle coordinates in any number of degrees of freedom and we prove the following result of "micro-diffusion": under generic assumptions on h and f , there exists an orbit of the system for which the drift of its action variables is at least of order square root of epsilon, after a time of order the inverse of square root of epsilon. The assumptions, which are essentially minimal, are that there exists a resonant point for h and that the corresponding averaged perturbation is non-constant. The conclusions, although very weak when compared to usual instability phenomena, are also essentially optimal within this setting.

Summary

We haven't generated a summary for this paper yet.