Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Class-conditional Autoencoders (1412.7009v3)

Published 22 Dec 2014 in cs.NE and cs.LG

Abstract: Recent work by Bengio et al. (2013) proposes a sampling procedure for denoising autoencoders which involves learning the transition operator of a Markov chain. The transition operator is typically unimodal, which limits its capacity to model complex data. In order to perform efficient sampling from conditional distributions, we extend this work, both theoretically and algorithmically, to gated autoencoders (Memisevic, 2013), The proposed model is able to generate convincing class-conditional samples when trained on both the MNIST and TFD datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.