2000 character limit reached
Zeros of exceptional Hermite polynomials (1412.6364v1)
Published 19 Dec 2014 in math.CA and nlin.SI
Abstract: We study the zeros of exceptional Hermite polynomials associated with an even partition $\lambda$. We prove several conjectures regarding the asymptotic behavior of both the regular (real) and the exceptional (complex) zeros. The real zeros are distributed as the zeros of usual Hermite polynomials and, after contracting by a factor $\sqrt{2n}$, we prove that they follow the semi-circle law. The non-real zeros tend to the zeros of the generalized Hermite polynomial $H_{\lambda}$, provided that these zeros are simple. It was conjectured by Veselov that the zeros of generalized Hermite polynomials are always simple, except possibly for the zero at the origin, but this conjecture remains open.