Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

Small automorphic representations and degenerate Whittaker vectors (1412.5625v1)

Published 17 Dec 2014 in math.NT, hep-th, and math.RT

Abstract: We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whittaker vectors on G. Although we expect our results to hold for arbitrary simply-laced groups, we give complete proofs only for G=SL(3) and G=SL(4). This is based on a method of Ginzburg that associates Fourier coefficients of automorphic forms with nilpotent orbits of G. Our results complement and extend recent results of Miller and Sahi. We also use our formalism to calculate various local (real and p-adic) spherical vectors of minimal representations of the exceptional groups E_6, E_7, E_8 using global (adelic) degenerate Whittaker vectors, correctly reproducing existing results for such spherical vectors obtained by very different methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube