Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

MORESANE: MOdel REconstruction by Synthesis-ANalysis Estimators. A sparse deconvolution algorithm for radio interferometric imaging (1412.5387v1)

Published 17 Dec 2014 in astro-ph.IM

Abstract: (arXiv abridged abstract) The current years are seeing huge developments of radio telescopes and a tremendous increase of their capabilities. Such systems make mandatory the design of more sophisticated techniques not only for transporting, storing and processing this new generation of radio interferometric data, but also for restoring the astrophysical information contained in such data. In this paper we present a new radio deconvolution algorithm named MORESANE and its application to fully realistic simulated data of MeerKAT, one of the SKA precursors. This method has been designed for the difficult case of restoring diffuse astronomical sources which are faint in brightness, complex in morphology and possibly buried in the dirty beam's side lobes of bright radio sources in the field. MORESANE is a greedy algorithm which combines complementary types of sparse recovery methods in order to reconstruct the most appropriate sky model from observed radio visibilities. A synthesis approach is used for the reconstruction of images, in which the synthesis atoms representing the unknown sources are learned using analysis priors. We apply this new deconvolution method to fully realistic simulations of radio observations of a galaxy cluster and of an HII region in M31. We show that MORESANE is able to efficiently reconstruct images composed from a wide variety of sources from radio interferometric data. Comparisons with other available algorithms, which include multi-scale CLEAN and the recently proposed methods by Li et al. (2011) and Carrillo et al. (2012), indicate that MORESANE provides competitive results in terms of both total flux/surface brightness conservation and fidelity of the reconstructed model. MORESANE seems particularly well suited for the recovery of diffuse and extended sources, as well as bright and compact radio sources known to be hosted in galaxy clusters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube