Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On regularity and the word problem for free idempotent generated semigroups (1412.5167v4)

Published 16 Dec 2014 in math.GR

Abstract: The category of all idempotent generated semigroups with a prescribed structure $\mathcal{E}$ of their idempotents $E$ (called the biordered set) has an initial object called the free idempotent generated semigroup over $\mathcal{E}$, defined by a presentation over alphabet $E$, and denoted by $\mathsf{IG}(\mathcal{E})$. Recently, much effort has been put into investigating the structure of semigroups of the form $\mathsf{IG}(\mathcal{E})$, especially regarding their maximal subgroups. In this paper we take these investigations in a new direction by considering the word problem for $\mathsf{IG}(\mathcal{E})$. We prove two principal results, one positive and one negative. We show that, for a finite biordered set $\mathcal{E}$, it is decidable whether a given word $w \in E*$ represents a regular element; if in addition one assumes that all maximal subgroups of $\mathsf{IG}(\mathcal{E})$ have decidable word problems, then the word problem in $\mathsf{IG}(\mathcal{E})$ restricted to regular words is decidable. On the other hand, we exhibit a biorder $\mathcal{E}$ arising from a finite idempotent semigroup $S$, such that the word problem for $\mathsf{IG}(\mathcal{E})$ is undecidable, even though all the maximal subgroups have decidable word problems. This is achieved by relating the word problem of $\mathsf{IG}(\mathcal{E})$ to the subgroup membership problem in finitely presented groups.

Summary

We haven't generated a summary for this paper yet.