Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rehabilitation of Count-based Models for Word Vector Representations (1412.4930v2)

Published 16 Dec 2014 in cs.CL

Abstract: Recent works on word representations mostly rely on predictive models. Distributed word representations (aka word embeddings) are trained to optimally predict the contexts in which the corresponding words tend to appear. Such models have succeeded in capturing word similarties as well as semantic and syntactic regularities. Instead, we aim at reviving interest in a model based on counts. We present a systematic study of the use of the Hellinger distance to extract semantic representations from the word co-occurence statistics of large text corpora. We show that this distance gives good performance on word similarity and analogy tasks, with a proper type and size of context, and a dimensionality reduction based on a stochastic low-rank approximation. Besides being both simple and intuitive, this method also provides an encoding function which can be used to infer unseen words or phrases. This becomes a clear advantage compared to predictive models which must train these new words.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ronan Collobert (55 papers)
  2. Rémi Lebret (19 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.