Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A kernel-based approach to Hammerstein system identification (1412.4055v2)

Published 12 Dec 2014 in cs.SY

Abstract: In this paper, we propose a novel algorithm for the identification of Hammerstein systems. Adopting a Bayesian approach, we model the impulse response of the unknown linear dynamic system as a realization of a zero-mean Gaussian process. The covariance matrix (or kernel) of this process is given by the recently introduced stable-spline kernel, which encodes information on the stability and regularity of the impulse response. The static non-linearity of the model is identified using an Empirical Bayes approach, i.e. by maximizing the output marginal likelihood, which is obtained by integrating out the unknown impulse response. The related optimization problem is solved adopting a novel iterative scheme based on the Expectation-Maximization (EM) method, where each iteration consists in a simple sequence of update rules. Numerical experiments show that the proposed method compares favorably with a standard algorithm for Hammerstein system identification.

Citations (21)

Summary

We haven't generated a summary for this paper yet.