Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Some approximation problems in semi-algebraic geometry (1412.3178v3)

Published 10 Dec 2014 in math.AG, math.MG, and math.OC

Abstract: In this paper we deal with a best approximation of a vector with respect to a closed semi-algebraic set $C$ in the space $\mathbb{R}n$ endowed with a semi-algebraic norm $\nu$. Under additional assumptions on $\nu$ we prove semi-algebraicity of the set of points of unique approximation and other sets associated with the distance to $C$. For $C$ irreducible algebraic we study the critical point correspondence and introduce the $\nu$- distance degree, generalizing the notion appearing in \cite{DHOST} for the Euclidean norm. We discuss separately the case of the $\ellp$ norm ($p>1$).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.