Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong orthogonality between the Mobius function and nonlinear exponential functions in short intervals (1412.2237v2)

Published 6 Dec 2014 in math.NT

Abstract: Let $\mu(n)$ be the M\"obius function, $e(z) = \exp(2\pi iz)$, $x$ real and $2\leq y \leq x$. This paper proves two sequences $(\mu(n))$ and $(e(nk \alpha))$ are strongly orthogonal in short intervals. That is, if $k \geq 3$ being fixed and $y\geq x{1-1/4+\varepsilon}$, then for any $A>0$, we have [ \sum_{x< n \leq x+y} \mu(n) e\left(nk \alpha \right) \ll y(\log y){-A} ] uniformly for $\alpha \in \mathbb{R}$.

Summary

We haven't generated a summary for this paper yet.