Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nested Variational Compression in Deep Gaussian Processes (1412.1370v1)

Published 3 Dec 2014 in stat.ML

Abstract: Deep Gaussian processes provide a flexible approach to probabilistic modelling of data using either supervised or unsupervised learning. For tractable inference approximations to the marginal likelihood of the model must be made. The original approach to approximate inference in these models used variational compression to allow for approximate variational marginalization of the hidden variables leading to a lower bound on the marginal likelihood of the model [Damianou and Lawrence, 2013]. In this paper we extend this idea with a nested variational compression. The resulting lower bound on the likelihood can be easily parallelized or adapted for stochastic variational inference.

Citations (65)

Summary

We haven't generated a summary for this paper yet.