Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gabor Frames for Quasicrystals, $K$-theory, and Twisted Gap Labeling (1411.7269v1)

Published 26 Nov 2014 in math.OA, math.FA, and math.KT

Abstract: We study the connection between Gabor frames for quasicrystals, the topology of the hull of a quasicrystal $\Lambda,$ and the $K$-theory of the twisted groupoid $C*$-algebra $\mathcal{A}\sigma$ arising from a quasicrystal. In particular, we construct a finitely generated projective module $\mathcal{H}\L$ over $\mathcal{A}\sigma$ related to time-frequency analysis, and any multiwindow Gabor frame for $\Lambda$ can be used to construct an idempotent in $M_N(\mathcal{A}\sigma)$ representing $\mathcal{H}\L$ in $K_0(\mathcal{A}\sigma).$ We show for lattice subsets in dimension two, this element corresponds to the Bott element in $K_0(\mathcal{A}_\sigma),$ allowing us to prove a twisted version of Bellissard's gap labeling theorem.

Summary

We haven't generated a summary for this paper yet.