Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep convolutional filter banks for texture recognition and segmentation (1411.6836v2)

Published 25 Nov 2014 in cs.CV

Abstract: Research in texture recognition often concentrates on the problem of material recognition in uncluttered conditions, an assumption rarely met by applications. In this work we conduct a first study of material and describable texture at- tributes recognition in clutter, using a new dataset derived from the OpenSurface texture repository. Motivated by the challenge posed by this problem, we propose a new texture descriptor, D-CNN, obtained by Fisher Vector pooling of a Convolutional Neural Network (CNN) filter bank. D-CNN substantially improves the state-of-the-art in texture, mate- rial and scene recognition. Our approach achieves 82.3% accuracy on Flickr material dataset and 81.1% accuracy on MIT indoor scenes, providing absolute gains of more than 10% over existing approaches. D-CNN easily trans- fers across domains without requiring feature adaptation as for methods that build on the fully-connected layers of CNNs. Furthermore, D-CNN can seamlessly incorporate multi-scale information and describe regions of arbitrary shapes and sizes. Our approach is particularly suited at lo- calizing stuff categories and obtains state-of-the-art re- sults on MSRC segmentation dataset, as well as promising results on recognizing materials and surface attributes in clutter on the OpenSurfaces dataset.

Citations (53)

Summary

We haven't generated a summary for this paper yet.