Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Anomaly Detection via Probabilistic Latent Variable Models (1411.3413v1)

Published 13 Nov 2014 in stat.ML and cs.LG

Abstract: We propose a nonparametric Bayesian probabilistic latent variable model for multi-view anomaly detection, which is the task of finding instances that have inconsistent views. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different views are generated from different latent vectors. By inferring the number of latent vectors used for each instance with Dirichlet process priors, we obtain multi-view anomaly scores. The proposed model can be seen as a robust extension of probabilistic canonical correlation analysis for noisy multi-view data. We present Bayesian inference procedures for the proposed model based on a stochastic EM algorithm. The effectiveness of the proposed model is demonstrated in terms of performance when detecting multi-view anomalies and imputing missing values in multi-view data with anomalies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.