Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space (1411.0846v2)

Published 4 Nov 2014 in math.AP

Abstract: We prove global well-posedness, scattering and blow-up results for energy-subcritical focusing nonlinear Schr\"odinger equations on the hyperbolic space. We show in particular the existence of a critical element for scattering for all energy-subcritical power nonlinearities. For mass-supercritical nonlinearity, we show a scattering vs blow-up dichotomy for radial solutions of the equation in low dimension, below natural mass and energy thresholds given by the ground states of the equation. The proofs are based on trapping by mass and energy, compactness and rigidity, and are similar to the ones on the Euclidean space, with a new argument, based on generalized Pohozaev identities, to obtain appropriate monotonicity formulas.

Summary

We haven't generated a summary for this paper yet.