Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

clustvarsel: A Package Implementing Variable Selection for Model-based Clustering in R (1411.0606v1)

Published 3 Nov 2014 in stat.CO

Abstract: Finite mixture modelling provides a framework for cluster analysis based on parsimonious Gaussian mixture models. Variable or feature selection is of particular importance in situations where only a subset of the available variables provide clustering information. This enables the selection of a more parsimonious model, yielding more efficient estimates, a clearer interpretation and, often, improved clustering partitions. This paper describes the R package clustvarsel which performs subset selection for model-based clustering. An improved version of the methodology of Raftery and Dean (2006) is implemented in the new version 2 of the package to find the (locally) optimal subset of variables with group/cluster information in a dataset. Search over the solution space is performed using either a stepwise greedy search or a headlong algorithm. Adjustments for speeding up these algorithms are discussed, as well as a parallel implementation of the stepwise search. Usage of the package is presented through the discussion of several data examples.

Summary

We haven't generated a summary for this paper yet.