Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A path integral approach to the Langevin equation (1411.0256v2)

Published 2 Nov 2014 in hep-th, cond-mat.stat-mech, math-ph, and math.MP

Abstract: We study the Langevin equation with both a white noise and a colored noise. We construct the Lagrangian as well as the Hamiltonian for the generalized Langevin equation which leads naturally to a path integral description from first principles. This derivation clarifies the meaning of the additional fields introduced by Martin, Siggia and Rose in their functional formalism. We show that the transition amplitude, in this case, is the generating functional for correlation functions. We work out explicitly the correlation functions for the Markovian process of the Brownian motion of a free particle as well as for that of the non-Markovian process of the Brownian motion of a harmonic oscillator (Uhlenbeck-Ornstein model). The path integral description also leads to a simple derivation of the Fokker-Planck equation for the generalized Langevin equation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com