Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Riemannian geometry of phase space and nonassociativity (1410.8191v1)

Published 29 Oct 2014 in math.QA and gr-qc

Abstract: Noncommutative or quantum' differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics) but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket, the data for the quantum differential forms is a Poisson-compatible connection it was recently shown that after this, classical data such as classical bundles, metrics etc. all become quantised in a canonicalfunctorial' way at least to 1st order in deformation theory. There are, however, fresh compatibility conditions between the classical Riemannian and the Poisson structures as well as new physics such as nonassociativity at 2nd order. We give an introduction to this theory and some details for the case of CP${}n$ where the commutation relations have the canonical form $[wi,\bar wj]=\mathrm{i}\lambda\delta_{ij}$ similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in $\lambda$.

Summary

We haven't generated a summary for this paper yet.