Ramsey numbers for trees II (1410.7637v5)
Abstract: Let $r(G_1, G_2)$ be the Ramsey number of the two graphs $G_1$ and $G_2$. For $n_1\ge n_2\ge 1$ let $S(n_1,n_2)$ be the double star given by $V(S(n_1,n_2))={v_0,v_1,\ldots,v_{n_1},w_0,w_1,\ldots,w_{n_2}}$ and $E(S(n_1,n_2))={v_0v_1,\ldots,v_0v_{n_1},v_0w_0,w_0w_1,\ldots,w_0w_{n_2}}$. In this paper we determine $r(K_{1,m-1},$ $S(n_1,n_2))$ under certain conditions. For $n\ge 6$ let $T_n3=S(n-5,3)$, $T_n{''}=(V,E_2)$ and $T_n{'''} =(V,E_3)$, where $V={v_0,v_1,\ldots,v_{n-1}}$, $E_2={v_0v_1,\ldots,v_0v_{n-4},v_1v_{n-3},v_1v_{n-2},$ $v_2v_{n-1}}$ and $E_3={v_0v_1,\ldots,v_0v_{n-4},v_1v_{n-3},v_2v_{n-2},v_3v_{n-1}}$. We also obtain explicit formulas for $r$ $(K_{1,m-1},T_n)$, $r(T_m',T_n)$ $(n\ge m+3)$, $r(T_n,T_n)$, $r(T_n',T_n)$ and $r(P_n,T_n)$, where $T_n\in{T_n'',T_n''',T_n3}$, $P_n$ is the path on $n$ vertices and $T_n'$ is the unique tree with $n$ vertices and maximal degree $n-2$.