Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $L^p$-Liouville property for smooth metric measure spaces (1410.7305v1)

Published 27 Oct 2014 in math.DG and math.AP

Abstract: In this short paper we study $L_fp$-Liouville property with $0<p<1$ for nonnegative $f$-subharmonic functions on a complete noncompact smooth metric measure space $(M,g,e{-f}dv)$ with $\mathrm{Ric}_fm$ bounded below for $0<m\leq\infty$. We prove a sharp $L_fp$-Liouville theorem when $0<m<\infty$. We also prove an $L_fp$-Liouville theorem when $\mathrm{Ric}_f\geq 0$ and $|f(x)|\leq \delta(n) \ln r(x)$.

Summary

We haven't generated a summary for this paper yet.