Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Relating the Bures measure to the Cauchy two-matrix model (1410.6883v3)

Published 25 Oct 2014 in math-ph, math.MP, math.PR, and quant-ph

Abstract: The Bures metric is a natural choice in measuring the distance of density operators representing states in quantum mechanics. In the past few years a random matrix ensemble and the corresponding joint probability density function of its eigenvalues was identified. Moreover a relation with the Cauchy two-matrix model was discovered but never thoroughly investigated, leaving open in particular the following question: How are the kernels of the Pfaffian point process of the Bures random matrix ensemble related to the ones of the determinantal point process of the Cauchy two-matrix model and moreover, how can it be possible that a Pfaffian point process derives from a determinantal point process? We give a very explicit answer to this question. The aim of our work has a quite practical origin since the calculation of the level statistics of the Bures ensemble is highly mathematically involved while we know the statistics of the Cauchy two-matrix ensemble. Therefore we solve the whole level statistics of a density operator drawn from the Bures prior.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube