Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Posteriors, conjugacy, and exponential families for completely random measures (1410.6843v2)

Published 24 Oct 2014 in math.ST, stat.ME, and stat.TH

Abstract: We demonstrate how to calculate posteriors for general CRM-based priors and likelihoods for Bayesian nonparametric models. We further show how to represent Bayesian nonparametric priors as a sequence of finite draws using a size-biasing approach---and how to represent full Bayesian nonparametric models via finite marginals. Motivated by conjugate priors based on exponential family representations of likelihoods, we introduce a notion of exponential families for CRMs, which we call exponential CRMs. This construction allows us to specify automatic Bayesian nonparametric conjugate priors for exponential CRM likelihoods. We demonstrate that our exponential CRMs allow particularly straightforward recipes for size-biased and marginal representations of Bayesian nonparametric models. Along the way, we prove that the gamma process is a conjugate prior for the Poisson likelihood process and the beta prime process is a conjugate prior for a process we call the odds Bernoulli process. We deliver a size-biased representation of the gamma process and a marginal representation of the gamma process coupled with a Poisson likelihood process.

Summary

We haven't generated a summary for this paper yet.