Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Velocity enhancement of reaction-diffusion fronts by a line of fast diffusion (1410.4738v2)

Published 17 Oct 2014 in math.AP

Abstract: We study the velocity of travelling waves of a reaction-diffusion system coupling a standard reaction-diffusion equation in a strip with a one-dimensional diffusion equation on a line. We show that it grows like the square root of the diffusivity on the line. This generalises a result of Berestycki, Roquejoffre and Rossi in the context of Fisher-KPP propagation where the question could be reduced to algebraic computations. Thus, our work shows that this phenomenon is a robust one. The ratio between the asymptotic velocity and the square root of the diffusivity on the line is characterised as the unique admissible velocity for fronts of an hypoelliptic system, which is shown to admit a travelling wave profile.

Summary

We haven't generated a summary for this paper yet.