Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Spearman's rho for aggregating ranks using copulas (1410.4391v4)

Published 16 Oct 2014 in stat.ML and cs.LG

Abstract: We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Furthermore, we consider the case of extreme lists: i.e., only the rank of the best or worst elements are known. We impute missing ranks by the average value and generalise Spearman's \rho to extreme ranks. Our main contribution is the derivation of a non-parametric estimator for rank aggregation based on multivariate extensions of Spearman's \rho, which measures correlation between a set of ranked lists. Multivariate Spearman's \rho is defined using copulas, and we show that the geometric mean of normalised ranks maximises multivariate correlation. Motivated by this, we propose a weighted geometric mean approach for learning to rank which has a closed form least squares solution. When only the best or worst elements of a ranked list are known, we impute the missing ranks by the average value, allowing us to apply Spearman's \rho. Finally, we demonstrate good performance on the rank aggregation benchmarks MQ2007 and MQ2008.

Citations (11)

Summary

We haven't generated a summary for this paper yet.