Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Decoupling Multivariate Polynomials Using First-Order Information (1410.4060v1)

Published 15 Oct 2014 in math.NA and cs.NA

Abstract: We present a method to decompose a set of multivariate real polynomials into linear combinations of univariate polynomials in linear forms of the input variables. The method proceeds by collecting the first-order information of the polynomials in a set of operating points, which is captured by the Jacobian matrix evaluated at the operating points. The polyadic canonical decomposition of the three-way tensor of Jacobian matrices directly returns the unknown linear relations, as well as the necessary information to reconstruct the univariate polynomials. The conditions under which this decoupling procedure works are discussed, and the method is illustrated on several numerical examples.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.