Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Solyanik estimates for the strong maximal function (1410.3402v1)

Published 13 Oct 2014 in math.CA

Abstract: Let $\mathsf M_{\mathsf S}$ denote the strong maximal operator on $\mathbb Rn$ and let $w$ be a non-negative, locally integrable function. For $\alpha\in(0,1)$ we define the weighted sharp Tauberian constant $\mathsf C_{\mathsf S}$ associated with $\mathsf M_{\mathsf S}$ by $$ \mathsf C_{\mathsf S} (\alpha):= \sup_{\substack {E\subset \mathbb Rn \ 0<w(E)<+\infty}}\frac{1}{w(E)}w(\{x\in\mathbb R^n:\, \mathsf M_{\mathsf S}(\mathbf{1}_E)(x)>\alpha}). $$ We show that $\lim_{\alpha\to 1-} \mathsf C_{\mathsf S} (\alpha)=1$ if and only if $w\in A_\infty *$, that is if and only if $w$ is a strong Muckenhoupt weight. This is quantified by the estimate $\mathsf C_{\mathsf S}(\alpha)-1\lesssim_{n} (1-\alpha){(cn [w]{A\infty *}){-1}}$ as $\alpha\to 1-$, where $c>0$ is a numerical constant; this estimate is sharp in the sense that the exponent $1/(cn[w]{A\infty *})$ can not be improved in terms of $[w]{A\infty *}$. As corollaries, we obtain a sharp reverse H\"older inequality for strong Muckenhoupt weights in $\mathbb Rn$ as well as a quantitative imbedding of $A_\infty*$ into $A_{p}*$. We also consider the strong maximal operator on $\mathbb Rn$ associated with the weight $w$ and denoted by $\mathsf M_{\mathsf S} w$. In this case the corresponding sharp Tauberian constant $\mathsf C_{\mathsf S} w$ is defined by $$ \mathsf C_{\mathsf S} w \alpha) := \sup_{\substack {E\subset \mathbb Rn \ 0<w(E)<+\infty}}\frac{1}{w(E)}w(\{x\in\mathbb R^n:\, \mathsf M_{\mathsf S} ^w (\mathbf{1}_E)(x)>\alpha}).$$ We show that there exists some constant $c_{w,n}>0$ depending only on $w$ and the dimension $n$ such that $\mathsf C_{\mathsf S} w (\alpha)-1 \lesssim_{w,n} (1-\alpha){c_{w,n}}$ as $\alpha\to 1-$ whenever $w\in A_\infty *$ is a strong Muckenhoupt weight.

Summary

We haven't generated a summary for this paper yet.