Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network infection source identification under the SIRI model (1410.2995v2)

Published 11 Oct 2014 in physics.soc-ph, cs.SI, and math.DS

Abstract: We study the problem of identifying a single infection source in a network under the susceptible-infected-recovered-infected (SIRI) model. We describe the infection model via a state-space model, and utilizing a state propagation approach, we derive an algorithm known as the heterogeneous infection spreading source (HISS) estimator, to infer the infection source. The HISS estimator uses the observations of node states at a particular time, where the elapsed time from the start of the infection is unknown. It is able to incorporate side information (if any) of the observed states of a subset of nodes at different times, and of the prior probability of each infected or recovered node to be the infection source. Simulation results suggest that the HISS estimator outperforms the dynamic message pass- ing and Jordan center estimators over a wide range of infection and reinfection rates.

Citations (10)

Summary

We haven't generated a summary for this paper yet.