Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regression-based covariance functions for nonstationary spatial modeling (1410.1494v2)

Published 6 Oct 2014 in stat.ME

Abstract: In many environmental applications involving spatially-referenced data, limitations on the number and locations of observations motivate the need for practical and efficient models for spatial interpolation, or kriging. A key component of models for continuously-indexed spatial data is the covariance function, which is traditionally assumed to belong to a parametric class of stationary models. However, stationarity is rarely a realistic assumption. Alternative methods which more appropriately model the nonstationarity present in environmental processes often involve high-dimensional parameter spaces, which lead to difficulties in model fitting and interpretability. To overcome this issue, we build on the growing literature of covariate-driven nonstationary spatial modeling. Using process convolution techniques, we propose a Bayesian model for continuously-indexed spatial data based on a flexible parametric covariance regression structure for a convolution-kernel covariance matrix. The resulting model is a parsimonious representation of the kernel process, and we explore properties of the implied model, including a description of the resulting nonstationary covariance function and the interpretational benefits in the kernel parameters. Furthermore, we demonstrate that our model provides a practical compromise between stationary and highly parameterized nonstationary spatial covariance functions that do not perform well in practice. We illustrate our approach through an analysis of annual precipitation data.

Citations (65)

Summary

We haven't generated a summary for this paper yet.