Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Top Rank Optimization in Linear Time (1410.1462v1)

Published 6 Oct 2014 in cs.LG, cs.AI, and cs.IR

Abstract: Bipartite ranking aims to learn a real-valued ranking function that orders positive instances before negative instances. Recent efforts of bipartite ranking are focused on optimizing ranking accuracy at the top of the ranked list. Most existing approaches are either to optimize task specific metrics or to extend the ranking loss by emphasizing more on the error associated with the top ranked instances, leading to a high computational cost that is super-linear in the number of training instances. We propose a highly efficient approach, titled TopPush, for optimizing accuracy at the top that has computational complexity linear in the number of training instances. We present a novel analysis that bounds the generalization error for the top ranked instances for the proposed approach. Empirical study shows that the proposed approach is highly competitive to the state-of-the-art approaches and is 10-100 times faster.

Citations (69)

Summary

We haven't generated a summary for this paper yet.