Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiscale Bernstein polynomials for densities (1410.0827v1)

Published 3 Oct 2014 in stat.ME

Abstract: Our focus is on constructing a multiscale nonparametric prior for densities. The Bayes density estimation literature is dominated by single scale methods, with the exception of Polya trees, which favor overly-spiky densities even when the truth is smooth. We propose a multiscale Bernstein polynomial family of priors, which produce smooth realizations that do not rely on hard partitioning of the support. At each level in an infinitely-deep binary tree, we place a beta dictionary density; within a scale the densities are equivalent to Bernstein polynomials. Using a stick-breaking characterization, stochastically decreasing weights are allocated to the finer scale dictionary elements. A slice sampler is used for posterior computation, and properties are described. The method characterizes densities with locally-varying smoothness, and can produce a sequence of coarse to fine density estimates. An extension for Bayesian testing of group differences is introduced and applied to DNA methylation array data.

Summary

We haven't generated a summary for this paper yet.