Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Not All Neural Embeddings are Born Equal (1410.0718v2)

Published 2 Oct 2014 in cs.CL

Abstract: Neural LLMs learn word representations that capture rich linguistic and conceptual information. Here we investigate the embeddings learned by neural machine translation models. We show that translation-based embeddings outperform those learned by cutting-edge monolingual models at single-language tasks requiring knowledge of conceptual similarity and/or syntactic role. The findings suggest that, while monolingual models learn information about how concepts are related, neural-translation models better capture their true ontological status.

Citations (51)

Summary

We haven't generated a summary for this paper yet.