Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Approach to Data-driven Parameterizations for Statistical Parametric Speech Synthesis (1409.8558v1)

Published 30 Sep 2014 in cs.CL, cs.LG, and cs.NE

Abstract: Nearly all Statistical Parametric Speech Synthesizers today use Mel Cepstral coefficients as the vocal tract parameterization of the speech signal. Mel Cepstral coefficients were never intended to work in a parametric speech synthesis framework, but as yet, there has been little success in creating a better parameterization that is more suited to synthesis. In this paper, we use deep learning algorithms to investigate a data-driven parameterization technique that is designed for the specific requirements of synthesis. We create an invertible, low-dimensional, noise-robust encoding of the Mel Log Spectrum by training a tapered Stacked Denoising Autoencoder (SDA). This SDA is then unwrapped and used as the initialization for a Multi-Layer Perceptron (MLP). The MLP is fine-tuned by training it to reconstruct the input at the output layer. This MLP is then split down the middle to form encoding and decoding networks. These networks produce a parameterization of the Mel Log Spectrum that is intended to better fulfill the requirements of synthesis. Results are reported for experiments conducted using this resulting parameterization with the ClusterGen speech synthesizer.

Citations (6)

Summary

We haven't generated a summary for this paper yet.