Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Discrete Dispersion Models and Their Tweedie Asymptotics (1409.7482v1)

Published 26 Sep 2014 in math.ST and stat.TH

Abstract: We introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, P\'olya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson-Tweedie asymptotic framework where Poisson-Tweedie models appear as dilation limits. This unifies many discrete convergence results and leads to Poisson and Hermite convergence results, similar to the law of large numbers and the central limit theorem, respectively. The dilation operator also leads to a duality transformation which in some cases transforms overdispersion into underdispersion and vice-versa. Many of the results have multivariate analogues, and in particular we consider a class of multivariate Poisson-Tweedie models, a multivariate notion of over- and underdispersion, and a multivariate zero-inflation index.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.