Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superscars in the Seba billiard (1409.6878v3)

Published 24 Sep 2014 in math.AP, math-ph, math.MP, math.NT, and nlin.CD

Abstract: We consider the Laplacian with a delta potential (a "point scatterer") on an irrational torus, where the square of the side ratio is diophantine. The eigenfunctions fall into two classes ---"old" eigenfunctions (75%) of the Laplacian which vanish at the support of the delta potential, and therefore are not affected, and "new" eigenfunctions (25%) which are affected, and as a result feature a logarithmic singularity at the location of the delta potential. Within a full density subsequence of the new eigenfunctions we determine all semiclassical measures in the weak coupling regime and show that they are localized along 4 wave vectors in momentum space --- we therefore prove the existence of so-called "superscars" as predicted by Bogomolny and Schmit. This result contrasts the phase space equidistribution which is observed for a full density subset of the new eigenfunctions of a point scatterer on a rational torus. Further, in the strong coupling limit we show that a weaker form of localization holds for a positive proportion of the new eigenvalues; in particular quantum ergodicity does not hold. We also explain how our results can be modified for rectangles with Dirichlet boundary conditions with a point scatterer in the interior. In this case our results extend previous work of Keating, Marklof and Winn who proved the existence of localized semiclassical measures under a non-clustering condition on the spectrum of the Laplacian.

Summary

We haven't generated a summary for this paper yet.