Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On estimation in the reduced-rank regression with a large number of responses and predictors (1409.6779v3)

Published 24 Sep 2014 in math.ST, math.PR, and stat.TH

Abstract: We consider a multivariate linear response regression in which the number of responses and predictors is large and comparable with the number of observations, and the rank of the matrix of regression coefficients is assumed to be small. We study the distribution of singular values for the matrix of regression coefficients and for the matrix of predicted responses. For both matrices, it is found that the limit distribution of the largest singular value is a rescaling of the Tracy-Widom distribution. Based on this result, we suggest algorithms for the model rank selection and compare them with the algorithm suggested by Bunea, She and Wegkamp. Next, we design two consistent estimators for the singular values of the coefficient matrix, compare them, and derive the asymptotic distribution for one of these estimators..

Summary

We haven't generated a summary for this paper yet.