Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

On the mean stability of a class of switched linear systems (1409.6032v1)

Published 21 Sep 2014 in math.OC

Abstract: This paper investigates the mean stability of a class of discrete-time stochastic switched linear systems using the $Lp$-norm joint spectral radius of the probability distributions governing the switched systems. First we prove a converse Lyapunov theorem that shows the equivalence between the mean stability and the existence of a homogeneous Lyapunov function. Then we show that, when $p$ goes to $\infty$, the stability of the $p$th mean becomes equivalent to the absolute asymptotic stability of an associated deterministic switched system. Finally we study the mean stability of Markovian switched systems. Numerical examples are presented to illustrate the results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube