Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking the Privacy-Preserving People Search (1409.5524v1)

Published 19 Sep 2014 in cs.IR and cs.CY

Abstract: People search is an important topic in information retrieval. Many previous studies on this topic employed social networks to boost search performance by incorporating either local network features (e.g. the common connections between the querying user and candidates in social networks), or global network features (e.g. the PageRank), or both. However, the available social network information can be restricted because of the privacy settings of involved users, which in turn would affect the performance of people search. Therefore, in this paper, we focus on the privacy issues in people search. We propose simulating different privacy settings with a public social network due to the unavailability of privacy-concerned networks. Our study examines the influences of privacy concerns on the local and global network features, and their impacts on the performance of people search. Our results show that: 1) the privacy concerns of different people in the networks have different influences. People with higher association (i.e. higher degree in a network) have much greater impacts on the performance of people search; 2) local network features are more sensitive to the privacy concerns, especially when such concerns come from high association peoples in the network who are also related to the querying user. As the first study on this topic, we hope to generate further discussions on these issues.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shuguang Han (22 papers)
  2. Daqing He (19 papers)
  3. Zhen Yue (5 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.