2000 character limit reached
Eilenberg swindles and higher large scale homology of products of trees (1409.5219v3)
Published 18 Sep 2014 in math.GT, math.AT, and math.GR
Abstract: We show that uniformly finite homology of products of $n$ trees vanishes in all degrees except degree $n$, where it is infinite dimensional. Our method is geometric and applies to several large scale homology theories, including almost equivariant homology and controlled coarse homology. As an application we determine group homology with $\ell_{\infty}$-coefficients of lattices in products of trees. We also show a characterization of amenability in terms of 1-homology and construct aperiodic tilings using higher homology.
Collections
Sign up for free to add this paper to one or more collections.