Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singularly perturbed Neumann problem for fractional Schrödinger equations (1409.4556v4)

Published 16 Sep 2014 in math.AP

Abstract: This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schr\"odinger equations with subcritical exponent. For some smooth bounded domain $\Omega\subset \mathbf Rn$, our boundary condition is given by \begin{equation*} \int_{\Omega}\frac{u(x)-u(y)}{|x-y|{n+2s}}dy=0\quad\mbox{for }x\in \mathbf Rn\setminus\bar\Omega. \end{equation*} We establish existence of nonnegative small energy solutions, and also investigate the integrability of the solutions on $\mathbf Rn$.

Summary

We haven't generated a summary for this paper yet.