Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slow synaptic dynamics in a network: from exponential to power-law forgetting (1409.4185v1)

Published 15 Sep 2014 in cond-mat.dis-nn and q-bio.NC

Abstract: We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modelled from the usual Hebbian perspective, while competition is modelled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal $1/t$ power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal $1/\sqrt{t}$ relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most novel and important result of our present investigations.

Summary

We haven't generated a summary for this paper yet.